Microscopy Calculator Objective_Mag := 20 Enter the Objective Magnification Objective NA := 0.80 Enter the Objective Numerical Aperture Medium Index := 1.000 Enter the medium's refractive index (air =1.000, water = 1.333, oil = 1.515) Objective Field Number := 22·mm Enter the well corrected Objective Field Diameter Wavelength := $550 \cdot \text{nm}$ Enter wavelength of light; yellow-green = 550 nm Camera Pixel Size := $2.40 \cdot \mu m$ Enter the size of the camera sensor's pixels (assumed to be square) Camera Pixels in Width := 5496 Enter the number of pixels in width Camera Pixels in Height := 3672 Enter the number of pixels in height Camera Sensor Width := Camera Pixel Size Camera Pixels in Width Camera Sensor Width = 13.19 mm Sensor Diagonal := $\sqrt{\text{Camera Sensor Width}^2 + \text{Camera Sensor Height}^2}$ Sensor Diagonal = 15.86·mm Unity_Tube_Lens_FOV := Sensor_Diagonal Objective Mag Unity_Tube_Lens_FOV = 0.79·mm Maximum_FOV_Diagonal := Objective_Field_Number Objective Mag Maximum_FOV_Diagonal = 1.10·mm $Optimum_Total_Mag := \frac{Sensor_Diagonal}{Maximum_FOV_Diagonal} \\ Optimum_Total_Mag = 14.42$ $Tube_Lens_Mag := \frac{Optimum_Total_Mag}{Objective_Mag} Tube_Lens_Mag = 0.72$ $Field_of_View_Width := \frac{Camera_Sensor_Width}{Optimum\ Total\ Mag} Field_of_View_Width = 914.64 \cdot \mu m$ $Field_of_View_Height := \frac{Camera_Sensor_Height}{Optimum\ Total\ Mag} \\ Field_of_View_Height = 611.09 \cdot \mu m$ FOV Area := Field of View Width-Field of View Height FOV Area = 0.56·mm² $\label{eq:Pixel_Resolution} \begin{aligned} Pixel_Resolution &:= \frac{Camera_Pixel_Size}{Optimum_Total_Mag} & Pixel_Resolution &= 0.17 \cdot \mu m \end{aligned}$ $$Oversampling := \frac{Diffraction_Resolution}{Pixel_Resolution} \qquad Oversampling = 2.52$$ $$Depth_of_Field_Half := \frac{Wavelength \cdot \sqrt{Medium_Index^2 - Objective_NA^2}}{2 \cdot Objective_NA^2} \qquad Depth_of_Field_Half = 0.26 \cdot \mu m \text{ [+/-]}$$ $$Depth_of_Focus := Depth_of_Field_Half \cdot Optimum_Total_Mag^2 \cdot 2 \qquad Depth_of_Focus = 107.24 \cdot \mu m$$ $$Allowable_Tilt_mrad_Half := \frac{Depth_of_Field_Half}{Maximum_FOV_Diagonal} \cdot 1000 \qquad Allowable_Tilt_mrad_Half = 0.23 \text{ [+/-]}$$ This information is being provided as reference only, and is subject to change at any time. Copyright Dover Motion 2020 www.dovermotion.com