

SmartStage Linear System C-Motion
Guide

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 2 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

This page is intentionally left blank.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 3 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Contents

About This Guide ... 8

Additional Reference Guides .. 8

What is included? .. 9

Definitions Used Within This Guide .. 9

What steps are needed to communicate with the stages? .. 10

Point-to-Point Serial .. 10

Multidrop Serial .. 10

CAN ... 10

C-Motion Axis Handles .. 11

Communicating with the Controllers .. 12

Handshake Communications .. 12

Important Registers and Bits .. 12

Getting the stage to move .. 13

Commutation or Phase Initialization .. 13

Basic Motion Commands .. 15

Unit conversion ... 16

Setting and Reading I/O .. 18

Homing Routines ... 19

DOF-5 Homing Routine: .. 19

Items tracked by the homing routine: .. 19

Using the function: .. 20

Advanced Features ... 21

Stall detection and Position Errors ... 21

Breakpoints ... 24

Absolute positioning with Stepper Motors (Open Loop Control) ... 25

Electronic Gearing (Step and Direction).. 26

TOP – Trigger on Position .. 28

UDP – User Defined Profile Mode... 30

Setting the GPIO State .. 34

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 4 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Error Codes ... 37

Overall Controller Behavior Notes .. 38

Known C-Motion Issues: ... 38

Serial Connection Desynchronization ... 38

Driver Dependency Issues ... 38

Starting Projects in Visual Studio .. 39

Visual Studio 2019 C++ Project Setup ... 39

Visual Studio 2019 C# Project Setup ... 48

Visual Studio 2017 C++ Project Setup ... 57

Visual Studio 2017 C# Project Setup ... 65

Original Source Code ... 74

The SDK ... 74

The DLLs .. 74

Rebuilding the DLLs ... 74

Review/Revision History .. 77

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 5 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

List of Tables

Table 1 - Event Status Register .. 12
Table 2 - Activity Status Register ... 13
Table 3 - Motor Type Vs. Control Loops .. 13
Table 4 - Homing Function Returns ... 19

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 6 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

List of Figures

Figure 1 - Axis Handle Declaration ... 11
Figure 2 - C-Motion Communications Functions ... 11
Figure 3 - Multiple Device Initialization Calls ... 11
Figure 4 - Additional Features Handle Creation .. 11
Figure 5 - Enabling Control Loops .. 13
Figure 6 – Calculating Phase Counts .. 14
Figure 7- Commutation Function ... 15
Figure 8 - Trajectory Parameters ... 15
Figure 9 - Unit Conversion Functions ... 17
Figure 10 - Setting I/O Commands... 18
Figure 11 - Signal Sense Register ... 18
Figure 12 – SmartStage Linear Homing Function Declaration ... 19
Figure 13 - Event Status Register ... 21
Figure 14 - Activity Status Register .. 22
Figure 15 - Configuring the Tracking Window Settings ... 23
Figure 16- Resetting Breakpoint Event Status ... 24
Figure 17 - Breakpoint Value Set ... 24
Figure 18 - Setting the Breakpoint ... 24
Figure 19 - Breakpoint Code Example ... 25
Figure 20 - Electronic Gearing Set Gear Ratio ... 26
Figure 21 - Electronic Gearing Set Gear Master .. 26
Figure 22 - Electronic Gearing Function Example .. 27
Figure 23 - Incremental TOP Example ... 29
Figure 24 - Tabled TOP Example .. 29
Figure 25 – Configure UDP Example Functions ... 30
Figure 26 - configureUDPfile() Example ... 32
Figure 27 - Enable UDP Mode Example ... 33
Figure 28 - SetGPIO Example ... 36
Figure 29 - Set GPIO Custom Function Definitions .. 36
Figure 30 - C-Motion Error Codes .. 37
Figure 31 - VS2019 C++ New Project ... 39
Figure 32 - VS2019 Adding Header Files .. 40
Figure 33 - VS2019 Project Properties ... 41
Figure 34 - VS2019 VC++ Directories ... 42
Figure 35 - VS2019 Excluding Uninstalled Dependencies .. 43
Figure 36 - VS2019 Rebuild .. 44
Figure 37 - VS2019 Run Debugging .. 44
Figure 38 - VS2019 Output Directory... 45
Figure 39 - VS2019 SAFESEH Warning ... 46
Figure 40 - VS2019 Missing Driver Error .. 46
Figure 41 - VS2019 Linker Error ... 47
Figure 42 - VS2019 C# Connection Initialization .. 48
Figure 43 - VS2019 New Project C# ... 49
Figure 44 - VS2019 DLL Location.. 50
Figure 45 - VS2019 Add DLL to Project .. 51
Figure 46 - VS2019 Choose Solution Platform ... 52
Figure 47 - VS2019 C# Build Directory ... 53
Figure 48 - VS2019 Debugging C# .. 54

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 7 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Figure 49 - VS2019 C# Output Directory Verification .. 55
Figure 50 - VS2019 HRESULT: 0x8007000В.. 56
Figure 51 - VS2017 C++ New Project ... 57
Figure 52 - VS2017 Project Properties ... 58
Figure 53 - VS2017 VC++ Directories ... 59
Figure 54 – VS2017 Removing Uninstalled Dependencies .. 60
Figure 55 - VS2017 Rebuild .. 61
Figure 56 - VS2017 Run Debugging .. 61
Figure 57 - VS2017 Output Directory... 62
Figure 58 - VS2017 SAFESEH Warning ... 63
Figure 59 - VS2017 Missing Driver Error .. 63
Figure 60 - VS2017 Linker Error ... 64
Figure 61 - VS2017 C# Connection Initialization .. 65
Figure 62 - VS2017 New Project C# ... 66
Figure 63 - VS2017 DLL Location.. 67
Figure 64 - VS2017 Add DLL to Project .. 68
Figure 65 - VS2017 Choose Solution Platform ... 69
Figure 66 - VS2017 C# Build Directory ... 70
Figure 67 - VS2017 Debugging C# .. 71
Figure 68 - VS2017 C# Output Directory Verification .. 72
Figure 69 - VS2017 HRESULT: 0x8007000В.. 73
Figure 70 – DLL File Structure .. 75
Figure 71 - Visual Studio Retargeting Solution .. 75
Figure 72 - Build Conditions ... 75

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 8 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

About This Guide

This document should serve as a guide to the included documentation, and where to start looking through the
resources available.

Additional Reference Guides
1) 41-1207 Word Structure App Note
2) Magellan Motion Control IC Programmer’s Command Reference
3) Magellan User-Defined Profile Mode Documentation rev1_1

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 9 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

What is included?

The C-Motion SDK and DLLs offer a command formatting API for communicating with Dover stages and controllers.
The library offers support for several devices and protocols, offering a variety of communications options with the
stages.

Demo code and examples are written using the libraries as well, since they offer additional readability and clarity
as to the commands sent to the controllers. For information on the command structure that is handled by the
libraries, see the reference documents in Additional Reference Guides, particularly 41-1207 Word Structure App
Note contains the formatting information for each protocol used.

The libraries also offer enums and error returns for each function call, making error handling far easier to
implement into a larger program.

The code included with these examples is from a subset of the larger original code base that supports additional
hardware and communications methods. See Original Source Code for more information on using the unmodified
original source code.

Definitions Used Within This Guide
This is a list of some of the terminology and definitions used within the guide to provide a better understanding
and common language.

1) Host, host machine, host controller
a. This refers to the computer or external system that sends commands to the controller. This

coordinates motion within the larger system program and handles telling the stage where to be
and when.

2) Stage, controller, stage controller
a. This refers to the Dover hardware SmartStage linear system and is the Dover hardware. These

devices are slave devices, and respond to a host controller or host machine that runs the larger
system program.

3) USB Stick
a. Dover stages with built-in controllers should come with a USB storage device that has this guide,

the guides referenced in Additional Reference Guides, example code, and the SDK and DLLs for C-
Motion.

b. The code used within figures in this guide are pulling demo code from the included examples on
these USB sticks, and the full examples can be found there. Some examples have additional
comments in the code.

c. Resource locations
i. 36105-01\C-Motion

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 10 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

What steps are needed to communicate with the stages?
Several different protocols are handled automatically through C-Motion so that the host does not have to format
any commands sent to the controller. Because there are several protocols, it is important that the host configure
C-Motion correctly depending on what the controller expects to receive.

Point-to-Point Serial
Point-to-Point serial communications is used with a single device connected at a time, generally over RS232. This
communications packet formatting style ignores the address bits and assumes that those bits will be all zeros. This
protocol cannot be used with multiple devices since they will all respond at the same time and cause
communications errors. See 41-1207 Word Structure App Note for more information on the packet structure sent.
C-Motion handles all formatting requirements and packet structure.

Multidrop Serial
This serial communications method is used with multiple devices, generally over RS485. This protocol requires a
set address to independently connect to different controllers on the same network. The address is used when
calculating the checksum. See 41-1207 Word Structure App Note for more information on the packet structure
sent. C-Motion handles all formatting requirements and packet structure.

CAN
This protocol requires CAN addressing, and a Node ID for addressing controllers individually. There is one
supported protocol. For more information on the packet structure, refer to 41-1207 Word Structure App Note.
Note that the drivers used within the libraries are 32-bit.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 11 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

C-Motion Axis Handles
C-Motion uses an “Axis Handle” to configure communications settings and port information for the supported
device drivers. At the beginning of the user code, a new handle should be initialized per Figure 1 - Axis Handle
Declaration. Note that these commands are using the enum from C-Motion to initialize axis handles for axis 0, the
primary setup on the controller.

PMDAxisHandle hAxis1;

Figure 1 - Axis Handle Declaration

Then communications settings should be initialized using one of the C-Motion initialization functions per Figure 2 -
C-Motion Communications Functions.

PMDSetupAxisInterface_Serial(phAxis1, PMDAxis1, serialmode, address, port, baud);
PMDSetupAxisInterface_CAN(phAxis1, PMDAxis1, baud, address);

Figure 2 - C-Motion Communications Functions

Once the initial axis handle has been created any subsequent devices connected will need a separate axis handle. It
is necessary to copy the axis interface over for any additional axes that will be connected. This should be done
using the calls per Figure 3 - Multiple Device Initialization Calls.

PMDCreateMultiDropHandle(phAxis2, phAxis1, PMDAxis1, nAddress2);
PMDCreateMultiDropHandle_CAN(phAxis2, phAxis1, PMDAxis1, 1);

Figure 3 - Multiple Device Initialization Calls

Once an axis handle is set up for each axis, the user must determine the axes that any additional features are
required on for configuration. Some features of the controllers are accessed by addressing “PMDAxis2” in the
command formatting, a virtual second axis that allows configuration of the following features:

• Trigger on Position (TOP)
• User Defined Profile Mode (UDP)
• Auxiliary encoders
• Electronic Gearing Mode
• Additional I/O

In order to initialize an additional handle for addressing these features on a single controller, use the command per
Figure 4 - Additional Features Handle Creation that copies over the communications settings from another axis
handle. This command does not change based on the protocol that is being used.

PMDCopyAxisInterface(phAxis2, phAxis1, PMDAxis2);

Figure 4 - Additional Features Handle Creation

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 12 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Communicating with the Controllers
All of the controllers addressable using C-Motion respond to requests from the host machine, and handle

trajectories and certain motion events in the background, but all other action must be handled on the host side.
Some of the included demo and example code relies heavily on the host machine handling the events generated by
the controller. Homing routines are a particular example where the controller handles the motion itself, but the
host is still ultimately making all the decisions and configuring what the controller should be watching for.

Handshake Communications
Handshake communications is a term used to describe the way these controllers operate. They only

respond to requests from the host, and so always need a “handshake” to give any information. This means that the
host must poll for status information from the controller if the host depends on a motion completing, or some
other status information is required from the controller.

Important Registers and Bits
Two main registers are used when controlling motions and verifying the condition the stage controller is

in. The Activity Status Register and the Event Status Register. See Table 1 - Event Status Register and Table 2 -
Activity Status Register for the more important status bits that can be monitored, and an explanation of each. See
Magellan Motion Control IC Programmer’s Command Reference for a full reference to the status bits.

Table 1 - Event Status Register

Bit
Number

Bit Name Description

0 Motion Complete The conditions that determine motion complete are described in Stall detection
and Position Errors, the bit goes high when they are met

2 Breakpoint 1 Breakpoints are described in Advanced Features, Breakpoints bit goes high
when the set condition is met

3 Capture Received The capture mechanism allows high-speed and short duration signal capture
used with index marks, the DOF-5 uses the home signal, the DMCM uses index

4 Motion Error The conditions that determine motion error are described in Stall detection and
Position Errors, the bit goes high when they are met

5 Positive Limit This bit goes high with the measured signal
6 Negative Limit This bit goes high with the measured signal
7 Instruction Error Set high when a command sent would trigger an error or when a

communication error occurs
11 Commutation

Error
Set high when a commutation error occurs, generally when phase initialization
fails, only relevant to 3 phase motors

12 Current Foldback Current foldback is an error state triggered by outputting current greater than
the max continuous specified current for too long a time (prevents damage to
motor)

14 Breakpoint 2 Breakpoints are described in Advanced Features, Breakpoints the bit goes high
when the set condition is met

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 13 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Table 2 - Activity Status Register

Bit
Number

Bit Name Description

0 Phasing Initialized Holds whether commutation or phasing has been initialized and completed
correctly on the controller

2 Tracking The tracking window (described in Stall detection and Position Errors) monitors
the position error and goes high when a threshold is exceeded

7 Axis Settled The conditions that determine what is settled are reviewed in Stall detection
and Position Errors, this bit goes high when they are met

11 In Positive Limit This bit goes high with the measured signal, and does not latch
12 In Negative Limit This bit goes high with the measured signal, and does not latch

Getting the stage to move
Before the stage can be moved, it must be in the correct operating mode, this depends on the motor type being
controlled. See Table 3 - Motor Type Vs. Control Loops for a table of supported/fixed motor types for Dover stages,
and the control loops to enable for each.

Table 3 - Motor Type Vs. Control Loops

Stage /
Controller

Motor
Type

Control Loops Needed Phase
Initialization
Required?

Motor Current

Smart
Stage

3 Phase 0x37 (Enable all: Axis Enabled, Motor Output,
Current Loop, Position Loop, Trajectory Loop)

Yes Controlled by
position loop

Once the appropriate control loops have been enabled by sending the command in Figure 5 - Enabling Control
Loops most stages will begin to hold position.

PMDSetOperatingMode(phAxis, 0x37);

Figure 5 - Enabling Control Loops

Commutation or Phase Initialization
For all 3 phase motors, the encoder and motor must be synchronized, so that the controller knows where

in travel to power which motor coil. This is done through the process of commutation, or phase initialization.
How it works: commutation or phase initialization engages one of the motor coils, and measures the

position that the stage settles to. It then engages a different motor coil, and measures how far the stage moves
from the previous position. From this, the controller can detect the direction moved, and where the motor coils
are in relation to the encoder position so it can properly engage the three motor coils at the correct positions.

Errors that can result from poor commutation, or not commutating:

• Motion error event status
o This is a common result of not commutating, since the motor engages the wrong coil first, which is

out of phase with the magnets mounted in the stage, causing the stage to move in an unpredictable
manner, often exceeding the tracking error limit.

• High current draw

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 14 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

o When the motor is not commutated, the stage may be able to maintain position if it happens to start
close to a magnetic pole, but the motor will need to use higher current in order to maintain position
properly.

Common problems encountered while commutating:

• Power cycled
o The commutation process must be completed every time the stage is power cycled.
o The process must also be re-run if the maximum velocity is exceeded, as encoder counts may have

been lost – at 1.25nm this is 31.25mm/s.
• Restricted motion

o The stage must be able to move freely when commutating in order to properly measure the motion
induced by the commutation process.

o If the stage is unbalanced (has external forces acting on it) and is biased to one of the mechanical
limits, then the stage may not be able to travel far enough to properly complete the process.

• Not enough time to execute the process completely
o These functions use a default time of 3 seconds to engage each of the 2 motor coils used, so a total of

6+ seconds should be allowed for the process to complete.
• Too low a motor output

o If the stage is unbalanced (biased to move in one direction by external forces) or has a very large
payload then the stage may need a higher motor output to drive it through one complete electrical
cycle.

o The default output is 10% of the set max, but this can be increased to help the motor locate the
electrical poles. Increases as high as 30-40% are generally safe. Contact Dover if outputs higher than
40% are needed.

• Incorrect configuration
o Reach out to Dover if the process cannot complete, things to check are the phase counts and phase

prescaler, these should satisfy the following equation where the prescaler is 1, 64, 128 or 256.The
electrical cycle is 25.4mm. The encoder resolution should be in counts/mm, so 5nm encoder has
200,000 counts/mm.

𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 =
𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝑎𝑎𝐸𝐸 𝑅𝑅𝑎𝑎𝑎𝑎𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝑅𝑅𝑎𝑎𝐸𝐸𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝑎𝑎𝑅𝑅 𝐶𝐶𝐶𝐶𝐸𝐸𝑅𝑅𝑎𝑎

𝑃𝑃𝐸𝐸𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎𝑅𝑅𝑎𝑎𝐸𝐸

Figure 6 – Calculating Phase Counts

Figure 7- Commutation Function shows an example function for commutation that has a simple check at the end
to verify that the process completed successfully.
void commutation(PMDAxisHandle * phAxis, PMDuint16 commMethod,PMDint16 commTime,
PMDint16 motorOutPercent) {

 //comm time to cycles conversion:
 int commTimecycles = commTime * 1000 / 20.4;

 printf("Initializing Phase\n");
 PMDSetOperatingMode(phAxis, 0x0001);

 //delay a fixed 100ms here
 int end_time, current_time;
 current_time = clock();
 end_time = current_time + 100;
 while ((current_time < end_time) || (current_time < 5000))
 current_time = clock();

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 15 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

 PMDSetCommutationMode(phAxis, 0);
 PMDSetPhaseInitializeMode(phAxis, commMethod);
 PMDSetPhaseCorrectionMode(phAxis, 0);
 PMDSetPhaseInitializeTime(phAxis, commTimecycles);
 PMDSetMotorCommand(phAxis, motorOutPercent * 32768 / 100);
 //reset errors
 PMDResetEventStatus(phAxis, 0xa000);
 PMDResetEventStatus(phAxis, 0xefff);
 PMDSetOperatingMode(phAxis, 0x0003);
 //start the process of commutation, do not interfere with this process while it
is running, or the controller will not finish and will not trip any errors
 PMDSetPhaseInitializeTime(phAxis, commTimecycles);
 PMDResetEventStatus(phAxis, 0xf7ff);
 PMDSetMotorCommand(phAxis, motorOutPercent * 32768 / 100);
 PMDInitializePhase(phAxis);

 //delay longer than the commutation operation is scheduled to take here
 current_time = clock();
 end_time = current_time + commTime * 2 + 1000;
 while ((current_time < end_time) || (current_time < 5000))
 current_time = clock();

 PMDSetMotorCommand(phAxis, 0);

 PMDuint16 phinit = 0;
 PMDGetActivityStatus(phAxis, &phinit);
 if (phinit && 0x0001) {
 //phasing initialized successfully
 printf("Completed OK\n");
 }
 else {
 //phasing did not complete correctly - be sure to check that the physical
motion of the stage is not interfered with
 printf("Failed\n");
 }
}

Figure 7- Commutation Function

Basic Motion Commands
Once the control loops are enabled, and the stage is holding position, it is ready to accept motion commands. All
controllers use absolute positioning for all commands sent, and the controllers only deal with encoder counts or
output counts. See Figure 8 - Trajectory Parameters for the parameters to send. Dover demo code that is
distributed with the controllers includes conversion formulas, and the conversion formulas can be found in the
Magellan Motion Control IC Programmer’s Command Reference.

PMDSetProfileMode(phAxis, PMDProfileModeTrapezoidal);
PMDSetJerk(phAxis, 1234);
PMDSetAcceleration(phAxis, 1234);
PMDSetDeceleration(phAxis, 1234);
PMDSetVelocity(phAxis, 1234);
PMDSetPosition(phAxis, 1234);
PMDUpdate(phAxis);

Figure 8 - Trajectory Parameters

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 16 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Be aware that until a home position is defined, the stage may not be at 0, as that is wherever the controller
happened to power on from. Caution should be exercised before homing the stage.

All commands issued are in absolute coordinates from the defined zero position of the controller, relative motions
must read the current commanded position and add to it.

Unit conversion
All commands issued to the controller must be sent in counts, the native units for the controllers. Real world unit
conversion must happen at the host level. See Figure 9 - Unit Conversion Functions for the functions used with
basic unit conversion for motion commands.

The functions referenced here use the encoder resolution in counts/mm to convert real world units in mm to
counts. For stages with 5nm, that should be 200,000 counts/mm, 1.25nm resolution should be 800,000
counts/mm, etc. Time is measured in servo cycles, for all current controllers the servo cycle is 51.2µs, or 19531.25
cycles/second. Verify this conversion with the stage controller datasheet.

Current conversion must use the 0.611mA/count value for the controller, this should be found in the SmartStage
user manual to ensure the correct value. This conversion is a direct multiplication of the value by the counts
measured.

Time conversions are all measured in servo cycles, which again are 51.2µs for all controllers as of writing, verify
this with the datasheet for the stage controller being used.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 17 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

//converts mm/s/s/s to PMD units
PMDint32 CalcJerk(float mmpsecpsecpsec_jerk, PMDuint32 enc_res) {
 /*
 * Jerk
 * 1 mm Encoder Ticks | sec | 3
 * ----- * ------------- * | ---------------- | * 4294967296 = PMD Jerk command
 * sec mm | 19531.25 cycles |
 */

 return (PMDint32)(mmpsecpsecpsec_jerk * enc_res / 19531.25 / 19531.25 / 19531.25
* 4294967296);
}

//converts mm/s/s to PMD units
PMDint32 CalcAccel(float mmpsecpsec_accel, PMDuint32 enc_res) {
 /*
 * Acceleration / Deceleration
 * 1 mm Encoder Ticks | sec | 2
 * ----- * ------------- * | ---------------- | * 65536 = PMD Acceleration
command
 * sec mm | 19531.25 cycles |
 */

 return (PMDint32)(mmpsecpsec_accel * enc_res / 19531.25 / 19531.25 * 65536);
}

//converts mm/s to PMD units
PMDint32 CalcVel(float mmpsec_vel, PMDuint32 enc_res) {
 /*
 * Velocity
 * 1 mm Encoder Ticks | sec |
 * ----- * ------------- * | ---------------- | * 65536 = PMD Veocity command
 * sec mm | 19531.25 cycles |
 */

 return (PMDint32)(mmpsec_vel * enc_res / 19531.25 * 65536);
}

//converts mm to PMD counts
PMDint32 CalcPos(float mm_pos, PMDuint32 enc_res) {
 return (PMDint32)(mm_pos * enc_res);
}

Figure 9 - Unit Conversion Functions

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 18 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Setting and Reading I/O

The controllers use a register to control and set the state of the input inversion, and output states. The hardware
connected to any actual outputs on the stage should be verified in the appropriate user manual. SmartStage linear
systems have multiplexed I/O, so the appropriate state must be set to use certain I/O features.

It is important not to invert the state of any inputs that are otherwise already configured. This could potentially
result in motion errors or other configuration issues. When setting the state of the I/O, two commands should be
issued, one to read the current state, and one that modifies the read state with updates to just the bits that need
to be changed.

Figure 10 - Setting I/O Commands has the two commands used to read and set the register, and Figure 11 - Signal
Sense Register has the available bits that can be set. Note that some features are on axis2, things like the pulse and
direction inputs and auxiliary encoder inputs. Care must be taken not to invert the state of the limits, encoder A/B
on axis 1, and the motor direction on axis 1.

PMDGetSignalSense(phAxis, &signalsense);
PMDSetSignalSense(phAxis, signalsense);

Figure 10 - Setting I/O Commands

Figure 11 - Signal Sense Register

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 19 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Homing Routines
The controllers do not support any pre-programmed functionality, so homing operations must be handled by the
host. Dover has several homing routines, all functioning similarly, checking initial conditions and beginning motion
with breakpoints set to stop motion once expected inputs are received. The host ends up polling for the
breakpoint status to move to the next step of homing. An explanation of one such routine is included in this
document, the source code for each routine is distributed with the controllers on their USB sticks.

SmartStage Linear Homing Routine:
The provided example homing routine for the DOF-5 takes two inputs specifically (see Figure 12 – SmartStage
Linear Homing Function Declaration) axis handle for the controller and the encoder resolution for the DOF being
addressed. The return is an int with states captured in Table 4 - Homing Function Returns.

int DOFhomeV2(PMDAxisHandle * phAxis, PMDuint32 enc_res);

Figure 12 – SmartStage Linear Homing Function Declaration

Table 4 - Homing Function Returns

Function
Return

Description Possible Causes

0 No error Homing completed successfully
1 Operating mode not set The homing function does not handle setup of the stage, make sure to

enable everything prior to calling the function
2 Error condition There was an error state in the event status register prior to starting,

be sure that the stage does not have any unhandled errors before
calling the function

3 Timeout The timeout period (default hardcoded 10 seconds) was exceeded
looking for the home signal, something interfered with motion, the
motor output may have been disabled

4 Error moving Something caused a motion error while homing, check for obstructions
to motion or that the stage is not unstable

The axis handle is whatever handle the user has initialized for the axis when connecting to the stage using C-
Motion. The encoder resolution is the number of counts/mm that the SmartStage linear encoder is configured for.
The most common resolution is 5nm (200,000 counts/mm).

This function can be called to move the stage to the ‘home’ position, at the center of travel, on the positive side of
the home signal transition point. The routine always approaches this point at a fixed speed (the default is 1mm/s)
from the top of travel, which should give a consistent homing position.

Items tracked by the homing routine:
• SignalSense

o The signal sense register is responsible for inverting/setting the read state for the controller
input signals. If this register was inverted for the home signal, it could affect the logic needed for
homing.

• Motion error, instruction error, overtemperature fault, drive exception, commutation error, current
foldback

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 20 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

o Motion error – the position error limit was exceeded – make sure that the error limit is not set
too tightly, and make sure the stage is normally stable, not oscillating and is unobstructed by
obstacles

o Instruction error – there was a communications problem – make sure the hardware used to
communicate with the stage controller is working reliably and that all library commands are
issuing correctly.

o Current Foldback – the stage was drawing higher current than is safe for too long a period of
time – make sure the stage is normally stable and operating correctly, no physical obstructions.

Using the function:
This function returns error codes depending on what happens while running. It checks for most error states while
running, and any pre-existing error states, and has a timeout using standard C calls when waiting to detect the
home switch. This is a blocking function.

• Before running the function:
o Make sure the operating mode of the controller has been set to 0x37 to enable all the control

loops.
o Make sure pre-existing errors are cleared using ResetEventStatus.

• While running the function:
o Make sure there are no physical obstructions to the motion of the stage.
o Make sure the stage can reach the home flag location (the center of stage travel)

• After running the function:
o Check the return value of the function to determine if there were any errors.
o To determine more detail about the error received, use GetEventStatus
o The stage should be configured for trapezoidal motion profiles with default speed and

acceleration. These can (and should) be overridden for future motions.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 21 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Advanced Features

Stall detection and Position Errors
The MC58113 controller has several settings that can be used for motion tracking and programmatically detecting
when there are deviations in position from the generated trajectory. The main settings to be aware of are
discussed below.

The Event Status Register:
The event status register holds the event statuses for the controller and contains more information that is
discussed here. The two bits that matter in this register for motion are highlighted below in Figure 13 - Event
Status Register

• Motion Complete
o This bit is set to 1 once the motion is considered to be complete
o This bit is set based off the settings in SetMotionCompleteMode to either commanded (purely

trajectory based) or actual (based off the physical stage position, and the settling settings)
• Motion Error

o This bit is set when the position error limit is exceeded, the controller will go into the state
specified by SetEventAction

Figure 13 - Event Status Register

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 22 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Activity Status Register:
The activity Register contains information relevant to the current running actions of the controller. The bits of
interest here are, and can be found in Figure 14 - Activity Status Register.

• Tracking (Window)
o The tracking window is a user-set window that can be used as a pre-position error warning or a

notifier that there may be something unexpected happening.
• In-motion

o This bit is set as long as the controller is moving in a generated profile and is based off the
commanded trajectory.

Figure 14 - Activity Status Register

User Defined Settings, Flags and Actions:
The user can define the behavior, and when that behavior will occur within the controller based off the settings
discussed below. Essentially the intended behavior is that the tracking window is used as an early warning system
that there is some following error, and the position error limit is used as the crash or stall detection.

• Error/Warning Settings
o Position Error Limit
o Event Action (Specifically for motion errors)
o Tracking Window

• Motion Complete Settings
o Settle Time
o Settle Window
o Motion Complete Mode (commanded or actual)

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 23 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Demo Code:
Figure 15 - Configuring the Tracking Window Settings is some C++ demo code using the C-Motion libraries to
configure these settings programmatically. Note that these can be saved to NVRAM.

//Setting the position error limit and action
PMDSetPositionErrorLimit(&hAxis1, CalcPos(0.01, enc_res));
PMDSetEventAction(&hAxis1, PMDEventActionEventMotionError,
PMDEventActionDisableMotorOutputAndHigherModules);

//Setting the tracking window (early warning for position error)
PMDSetTrackingWindow(&hAxis1, CalcPos(0.005, enc_res));

//Setting the motion complete settings
//generally use the actual position mode, this is based off encoder data instead of the
generated trajectory
PMDSetMotionCompleteMode(&hAxis1, PMDMotionCompleteModeActualPosition);
//settle time is set in servo cycles (51.2us)
float pmdsettletime = 100;//in milliseconds
PMDSetSettleTime(&hAxis1, (PMDuint16)(pmdsettletime/51.2));
//the settling window must be maintained for the settle time for "motion to be
complete"
PMDSetSettleWindow(&hAxis1, CalcPos(0.001, enc_res));

Figure 15 - Configuring the Tracking Window Settings

The event status register and activity status register can then be polled for during motion to observe if any unusual
behavior is resulting in undesired motion or unpredictable behavior.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 24 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Breakpoints
Breakpoints provide a convenient way to trigger different actions at reasonably precise timings with the
controllers. Each controller has two configurable breakpoints. Breakpoints need several commands to be
configured to work:

1) Reset the event status
In order to work properly the event status must be cleared for the breakpoint. See Figure 16- Resetting Breakpoint
Event Status for the commands to reset the event statuses.

PMDResetEventStatus(phAxis1, 0xFFFE);
PMDResetEventStatus(phAxis1, 0xBFFF);

Figure 16- Resetting Breakpoint Event Status

2) Set the breakpoint value

Breakpoint values are set depending on what triggers are being used by the breakpoint. Some are very
straightforward like position-based triggers, where the value set is the position (always be sure to convert the units
to counts, or the base controller units).

Breakpoints that trigger off signals or other registers need to be configured with a selection mask and sense mask.
This allows the user to control which signals will cause the breakpoint to trigger and what is considered “active” for
a trigger. In Figure 17 - Breakpoint Value Set, a value of 0x00400040 is used.

• The first 4 bytes (0x0040) select the Axis In signal
• The second 4 bytes (0x0040) select the active high/low for the incoming signal

PMDSetBreakpointValue(phAxis, PMDBreakpoint1, 0x00400040);

Figure 17 - Breakpoint Value Set

3) Set the breakpoint action and trigger

There are a lot of actions and triggers available, read through the below list to see what can be used. The names
listed here are also the enumerated names within the SDK, and an example call is in Figure 18 - Setting the
Breakpoint.

PMDSetBreakpoint(phAxis1, PMDBreakpoint1, sourceaxis, PMDBreakpointActionUpdate,
PMDBreakpointTriggerSignalStatus);

Figure 18 - Setting the Breakpoint

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 25 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

• Breakpoint Actions

o PMDBreakpointActionUpdate
o PMDBreakpointActionAbruptStop
o PMDBreakpointActionSmoothStop
o PMDBreakpointActionMotorOff
o PMDBreakpointActionDisablePositionLoopAndHigherModules
o PMDBreakpointActionDisableCurrentLoopAndHigherModules
o PMDBreakpointActionDisableMotorOutputAndHigherModules
o PMDBreakpointActionAbruptStopWithPositionErrorClear

• Breakpoint Triggers
o PMDBreakpointTriggerDisable
o PMDBreakpointTriggerGreaterOrEqualCommandedPosition
o PMDBreakpointTriggerLessOrEqualCommandedPosition
o PMDBreakpointTriggerGreaterOrEqualActualPosition
o PMDBreakpointTriggerLessOrEqualActualPosition
o PMDBreakpointTriggerCommandedPositionCrossed
o PMDBreakpointTriggerActualPositionCrossed
o PMDBreakpointTriggerTime
o PMDBreakpointTriggerEventStatus
o PMDBreakpointTriggerActivityStatus
o PMDBreakpointTriggerSignalStatus
o PMDBreakpointTriggerDriveStatus

Absolute positioning with Stepper Motors (Open Loop Control)
A very helpful use of breakpoints is detecting the home signal. See Figure 19 - Breakpoint Code Example for a C++
example of these commands that could be used to stop motion after detecting the signal state change, this is
pulled from the homing routine demo function.

//Next we will reset the event status for:
PMDResetEventStatus(phAxis, 0xFFFB); //0xFFFB - breakpoint 1
PMDResetEventStatus(phAxis, 0xBFFF); //0xBFFF - breakpoint 2

//we want to allow the stage to move into the positive side of travel slightly so we
can find the tripping point from the positive direction
//so we will use a breakpoint, configured for smooth stopping so the stage decelerates
into the positive half of travel
//the first half of this value is the selection mask for WHAT signals will cause the
breakpoint, the second half is the sense mask for WHAT STATES will trigger the
breakpoint
//So, with 0x0008 0008 we are expecting a capture source to go high will trigger the
breakpoint
PMDSetBreakpointValue(phAxis, 0, firstBPValue);
PMDSetBreakpoint(phAxis, 0, 0, PMDBreakpointActionSmoothStop, 0x00080008);

Figure 19 - Breakpoint Code Example

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 26 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Electronic Gearing (Step and Direction)
Electronic gearing or step and direction inputs allow the controller to be commanded to move by an external
source without needing to send any communications commands to the controller. Two inputs to the controller can
be configured to act as an auxiliary set of inputs.

NOTE: A second axis handle is required to access the auxiliary encoder inputs, refer to C-Motion Axis Handles for
more information on copying the axis interface handle to a second handle on ‘axis 2’ in order to configure the
inputs.

There are two primary commands used to configure this profile mode and operation of the stage, see Figure 20 -
Electronic Gearing Set Gear Ratio and Figure 21 - Electronic Gearing Set Gear Master for the syntax for the
commands.

Setting the gear ratio allows finer or more coarse control of position from the same input source. This can be
helpful if larger, fast motions are needed with fewer pulses from the master. This function scales everything such
that 65,536 is a 1:1 ratio and allows negative numbers to invert the direction. So, increasing the number to
131,072 would be a ratio of 2:1, one master count or pulse moves the stage by 2 encoder counts. Setting it to
32,767 halves that ratio, such that two pulses of input signal move the stage by one encoder count.
PMDSetGearRatio(phAxis1, (PMDint32)egearratio);

Figure 20 - Electronic Gearing Set Gear Ratio

Setting the master sets up the input and control, the master axis should always be set to 1, and the source should
be set to commanded, so this function call should always resemble Figure 21 - Electronic Gearing Set Gear Master.
PMDSetGearMaster(phAxis1, 1, 1);

Figure 21 - Electronic Gearing Set Gear Master

See Figure 22 - Electronic Gearing Function Example for a reference on configuring electronic gearing mode. Once
configured, the host should occasionally check for error states from the controller to ensure that nothing
unexpected occurred. Note that electronic gearing mode is another profile mode that is selected using the same
commands as setting the profile in the trajectory generator. However, the controller does not follow a trajectory
generated profile once this mode is engaged, and the controller will ‘snap’ between positions. It becomes the
responsibility of the external controller to handle acceleration, deceleration and profile generation.

Two modes of input can be configured, step/direction or a quadrature encoder input. Where step/direction uses
one pin to increment position and one pin to determine the polarity of the increment, the direction. Quadrature
input the pin states alternate between high and low 90 degrees out of phase, and direction is determined by the
order of their changing.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 27 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

void ElectronicGearing(PMDAxisHandle * phAxis1, PMDAxisHandle * phAxis2, float
egearratio, int dirpolarity) {

 //So be sure to set these when using electronic gearing mode (step/direction)

 //here we are setting the signal sense bit to the appropriate value
 //this will reverse the direction of travel for a high/low signal on the
direction input
 PMDuint16 signalsense = 0;//active high/low control
 PMDGetSignalSense(phAxis2, &signalsense);
 if(dirpolarity)
 PMDSetSignalSense(phAxis2, signalsense & ~0x0002);//unset
 else
 PMDSetSignalSense(phAxis2, signalsense | 0x0002);//set
 //DoverSetSignalSenseBit(phAxis2, 0x0002, dirpolarity);

 //ensure that the second encoder source is set to pulse and direction mode
 //PMDAuxiliaryEncoderModePulseAndDirection
 //PMDEncoderSourcePulseAndDirection
 PMDSetEncoderSource(phAxis2, PMDEncoderSourcePulseAndDirection);

 //setting the gear ratio
 //this has a unity scale factor of 65536, where one input pulse is 1 output
pulse
 //this is a fixed decimal point number that is 16.16, so 0x00010000 or 65536 is
unity (1)
 //a ratio of 1 input to 10 output has a ratio of 65536
 //a ratio of 10 input to 1 output has a ratio of 655
 //here we are converting the sent decimal ratio
 egearratio *= 65536;
 PMDSetGearRatio(phAxis1, (PMDint32)egearratio);

 //make sure both axes are enabled
 stageEnable(phAxis1);
 PMDSetOperatingMode(phAxis2, PMDOperatingModeAxisEnabled);

 //set the master and source axis
 PMDSetGearMaster(phAxis1, 1, 1);

 //set up the profile mode last, right before the update that makes all this go
into effect
 PMDSetProfileMode(phAxis1, PMDProfileModeElectronicGear);
 PMDUpdate(phAxis1);
}

Figure 22 - Electronic Gearing Function Example

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 28 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

TOP – Trigger on Position
Trigger on position is an output mode that allows high precision triggering off the raw encoder position. The
output is two signals, a gate signal that either allows or prevents the trigger signal from reaching the output of the
controller, and the trigger signal itself. These signals are “and” gated together within the controller, so no false
triggers will be possible without the gate signal. The gate signal can also serve as a useful signal to drive
illumination sources, and things of that nature within a system.

Usage notes:

• SmartStage linear systems have multiplexed I/O lines, and must be set to the correct GPIO state for these
signals to reach the main connector. See Setting the GPIO State for more detail on this.

• The trigger signal is a 250ns pulse that outputs on an output pin from the controller, see the
controller/stage datasheet for more information on wiring details. This pulse duration is fixed and cannot
be modified.

• Trigger on position is not compatible with a stage/controller using SPI encoder data. Contact Dover for
more information, SmartStage Linear systems ship with SPI encoder data used by default. Run
GetEncoderSource() to determine if this feature is enabled on the controller, if the returned value is
decimal 11, or 0xB the encoder is set for SPI data.

• Tabled trigger on position mode requires usage of memory space on the controller, which the MC58113
has a fixed user-configurable memory buffer size of 4096 32-bit data points. This memory space is also
shared with the trace buffer space, so using this feature reduces the amount of data that can be captured.

Trigger on position features two main use cases, incremental triggering (firing an output pulse every X encoder
counts) and table-based positions to fire the pulse. Example code for each use case is reviewed below.

Incremental triggering can be configured using the example function in Figure 23 - Incremental TOP Example.
There are a set of parameters to configure for the operation of the output, some of which configure things on the
second axis handle which must be defined in order to address these features. This example uses the enum
documented in TriggerOnPosition.h to make the example code easier to read and understand.

//NOTE TOP does not work in SPI encoder mode
void IncrementalTOPgated(PMDAxisHandle * phAxis1, PMDAxisHandle * phAxis2, PMDuint32
increment, PMDint32 start_pos, PMDint32 stop_pos)
{
 //ensure we disable everything first before changing values
 DisableTOP(phAxis1, phAxis2);

 //2 < max pos < 32bit
 PMDSetFeedbackParameter(phAxis2, TOPincrement, increment);//this is the distance
between output pulses in encoder counts
 PMDSetFeedbackParameter(phAxis2, TOPtrigger, 0);//trigger
 PMDSetFeedbackParameter(phAxis2, TOPmode, TOPincremental);//periodic/incremental
mode (3)

 PMDSetFeedbackParameter(phAxis1, TOPmode, TOPdisabled); //Disable
 PMDSetFeedbackParameter(phAxis1, TOPoutputStart, start_pos); // triggering
enabled between the start position
 PMDSetFeedbackParameter(phAxis1, TOPoutputStop, stop_pos); // and the stop
position
 PMDSetFeedbackParameter(phAxis1, TOPmode, TOPenabled); //level mode (0)
}

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 29 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Figure 23 - Incremental TOP Example

Tabled TOP must be enabled after first configuring the tabulated data in controller memory. The example function
in TriggerOnPosition.cpp demonstrates this in either tabledTOP() or tabledTOPfile(). The code snippet in Figure 24 -
Tabled TOP Example shows configuring the controller memory once the data points have been determined, loaded
or put into an array. The commands at the end enable TOP mode to run, and return the length of the tabled
memory buffer space since this is shared with traces and the host machine should be aware of the now limited
trace memory space.

//Buffer setup
 //create the TOP table in controller buffer space
 PMDSetBufferStart(phAxis1, TOPBUFFID, topbuffmemloc);//set up the memory address
and buffer ID
 PMDSetBufferLength(phAxis1, TOPBUFFID, TOPBUFFERLENGTH);//set up the buffer
length
 PMDSetBufferWriteIndex(phAxis1, TOPBUFFID, topbuffmemloc);//ensure a write index
of 0 to write from the begining
 for (int i = 0; i < TOPBUFFERLENGTH; i++) {
 PMDWriteBuffer(phAxis1, TOPBUFFID, toppoints[i]);
 }
 PMDSetBufferReadIndex(phAxis1, TOPBUFFID, topbuffmemloc);

 //This code reads the TOP buffer to verify that it was set correctly.
 /*PMDSetBufferReadIndex(phAxis1, TOPBUFFID, 0);
 for (int i = 0; i < TOPBUFFERLENGTH; i++) {
 PMDint32 blarf = 0;
 PMDReadBuffer(phAxis1, TOPBUFFID, &blarf);
 printf("ibuff %i %i\n", i, blarf);
 //PMDWriteBuffer(phAxis1, pbuffID, ppoints[i]);
 }*/

 //make sure to close the file
 fclose(stream);

 //enable TOP output
 PMDSetFeedbackParameter(phAxis1, TOPmode, TOPdisabled); //Disable
 PMDSetFeedbackParameter(phAxis1, TOPtabledBuffID, TOPBUFFID); // Begin
Triggering
 PMDSetFeedbackParameter(phAxis1, TOPmode, TOPtabled); //Enable Mode

 //return the size of the memory buffer used
 return buffcount;
}

Figure 24 - Tabled TOP Example

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 30 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

UDP – User Defined Profile Mode
User defined profile mode allows external signals to drive motion in a defined way, specified by the host controller.
This allows for things like coordinated motion, triggered motion, and pre-planned sets of positions to be loaded
into memory and run on the controller.

Notes about this section:

• This guide will cover setting up and configuring coordinated motion between axes, as this is the more
common use case for this feature. See Additional Reference Guides for additional material on using this
feature.

• This profile mode generally requires usage of memory space on the controller, which the MC58113 has a
fixed user-configurable memory buffer size of 4096 32-bit data points. This memory space is also shared
with the trace buffer space, so using this feature reduces the amount of data that can be captured.

To configure this feature to run properly, users must configure the data in the controllers’ memory buffer, then
enable the feature. This can be done using the demo code in Figure 25 – Configure UDP Example Function.
Essentially this function sets up the memory buffer, then calls the enable demo function, both of which are
discussed in more detail below.

int configureUDPfile(PMDAxisHandle * phAxis1, PMDAxisHandle * phAxis2, const char
*filename, int enc_res);
void enableUDPmode(PMDAxisHandle * phAxis1, PMDAxisHandle * phAxis2);

Figure 25 – Configure UDP Example Functions

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 31 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

The example function configureUDPfile() is an example that handles reading a file, and loading in the lists of input
positions and output positions into the appropriate memory locations on the controller. It also includes a call to
enable UDP profile mode. Figure 26 - configureUDPfile() Example below shows the important sections of the code
that send the appropriate arrays of data points to the memory locations on the controller.

Since the controller has a fixed memory size, we return the size of the data space used by this process so the host
can be aware of the remaining memory size if traces are used.

//MC58113 has a maximum buffer size of 0x1000, so we just create arrays that size plus
one
 //NVRAM starts well outside of the trace buffer area
 //trace buffer is 0x0000 to 0x1000 (4096)
 int ipoints[4097];
 int ppoints[4097];

 char line[1024];
 while (fgets(line, 1024, stream))//&& buffcount <= buffsize)
 {
 char* tmp = _strdup(line);
 char * tmp2;
 ipoints[buffcount] = atoi(strtok_s(tmp, ",", &tmp2));
 ppoints[buffcount] = atoi(strtok_s(NULL, "\n", &tmp2));
 // NOTE strtok destroys tmp - we need to clear it
 free(tmp);
 buffcount++;
 }

 uint32_t ibuffmemloc = 0x0000;//this memory location can be set somewhat
arbitrarily, generally start from 0
 uint32_t pbuffmemloc = ibuffmemloc + buffcount + 1;//this needs to start right
after the ibuffer without overlapping

 //Buffer setup
 //create the I (input) table
 PMDSetBufferStart(phAxis1, IBUFFID, ibuffmemloc);//set up the memory address and
buffer ID
 PMDSetBufferLength(phAxis1, IBUFFID, buffcount);//set up the buffer length
 PMDSetBufferWriteIndex(phAxis1, IBUFFID, 0);//ensure a write index of 0 to write
from the begining
 //create the P (position) table
 PMDSetBufferStart(phAxis1, PBUFFID, pbuffmemloc);//set up the memory address and
buffer ID
 PMDSetBufferLength(phAxis1, PBUFFID, buffcount);//set up the buffer length
 PMDSetBufferWriteIndex(phAxis1, PBUFFID, 0);//ensure a write index of 0 to write
from the begining
 for (int i = 0; i < buffcount; i++) {
 PMDWriteBuffer(phAxis1, IBUFFID, ipoints[i]);
 PMDWriteBuffer(phAxis1, PBUFFID, ppoints[i]);
 }

 //This code reads the UDP buffer to verify that it was set correctly.
 //uncomment this to debug and make sure the buffer is getting written to the
controller correctly
 /*PMDSetBufferReadIndex(phAxis1, PBUFFID, 0);

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 32 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

 for (int i = 0; i < buffcount; i++) {
 PMDint32 blarf = 0;
 PMDReadBuffer(phAxis1, PBUFFID, &blarf);
 printf("pbuff %i %i\n", i, blarf);
 }
 PMDSetBufferReadIndex(phAxis1, IBUFFID, 0);
 for (int i = 0; i < buffcount; i++) {
 PMDint32 blarf = 0;
 PMDReadBuffer(phAxis1, IBUFFID, &blarf);
 printf("ibuff %i %i\n", i, blarf);
 }*/

 enableUDPmode(phAxis1, phAxis2);

 //note that we need to double the UDP buffer count size since we have an input
and output buffer
 return buffcount * 2 + 1;
}

Figure 26 - configureUDPfile() Example

Then enabling the UDP profile mode requires a little more setup to ensure that everything is properly configured
and set up. When configuring everything, the parameters are all buffered but should only be modified when in a
different profile mode to avoid unexpected behavior. So first we put the controller in a known profile mode
(trapezoidal is used in the example).

The auxiliary encoder inputs are configured appropriately, the example functions are setting up for coordinated
motion between two axes, and so are expecting a quadrature input signal from the encoder pass-through from
another stage. After that, most parameters for the profile mode are set using the new enum defined in
UDPmode.h, making them human-readable and easier to set and track. Finally, the profile mode is set to 10, or
UDP mode, and an update command is issued to initialize everything. See the example code in Figure 27 - Enable
UDP Mode Example for additional comments on each function and the parameters set.

void enableUDPmode(PMDAxisHandle * phAxis1, PMDAxisHandle * phAxis2) {
 printf("Enabling UDP mode from controller buffer.\n");

 //Note that this function resets the position in the memory index and resets the
input encoder position. The output profile will completely restart.
 //To avoid this, comment out the following lines from the code below:
 //PMDSetProfileParameter(phAxis1, PMDProfileParameterStartIndex, 0);
 //PMDSetActualPosition(phAxis2, 0);

 PMDResetEventStatus(phAxis1, 0);//literally all event statuses will be reset
 PMDResetEventStatus(phAxis1, 0xDFFF);//reset runtime errors in UDP mode

 PMDSetProfileMode(phAxis1, PMDProfileModeTrapezoidal);
 PMDUpdate(phAxis1);

 //for testing purposes, disable motion error event actions
 PMDSetEventAction(phAxis1, PMDEventActionEventMotionError, PMDEventActionNone);

 //ensure that the second encoder source is set to incremental to read AqB inputs
 PMDSetEncoderSource(phAxis2, 0x0000);
 //ensure that the starting encoder position is 0 to prevent and erratic starting
behavior

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 33 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

 PMDSetActualPosition(phAxis2, 0);

 //configure profile parameter values
 PMDSetProfileParameter(phAxis1, PMDProfileParameterSource, 0x0001);//set the
profile source to the encoder input from "axis 2"
 //NOTE: Axis 2 in this instance does not refer to a second axis, but rather a
virtual "second axis" to source another encoder signal from
 //Bits [7:0] specify the source axis, 0 means Axis1, 1 means Axis2, and so
forth.
 //Bits[15:8] specify the source type, 0 means actual position, 1 means commanded
position, and 2 means time(axis field ignored).All other values are reserved.
 PMDSetProfileParameter(phAxis1, PMDProfileParameterRateScalar,
0x00010000);//sets the ratio between input and output
 //The Rate Scalar is a signed quantity scaled by 1/65536, that is, a 16.16 fixed
point quantity.
 //(first 16 bits are the whole number, second 16 bits are the fractional)
 //0x00010000 is 1.0
 PMDSetProfileParameter(phAxis1, PMDProfileParameterStartValue, 0);//sets the
starting value for the contour (position index?) MUST BE 0
 PMDSetProfileParameter(phAxis1, PMDProfileParameterStartIndex, 0);//sets the
starting index for the contour (memory index?)
 PMDSetProfileParameter(phAxis1, PMDProfileParameterStopValue, 0xFFFFFFFF);//sets
the value within the contour that it should stop following
 //as long as this is outside the bounds of the contour it should be fine,
otherwise it will stop where this is set
 PMDSetProfileParameter(phAxis1, PMDProfileParameterIBufferID, IBUFFID);//I
buffer memory address
 PMDSetProfileParameter(phAxis1, PMDProfileParameterPBufferID, PBUFFID);//P
buffer memory address

 PMDSetProfileMode(phAxis1, PMDProfileModeUserDefinedProfile);//Profile mode 10
(0xA)

 //make sure all updates are done before sending an update
 PMDUpdate(phAxis1);
}

Figure 27 - Enable UDP Mode Example

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 34 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Setting the GPIO State
SmartStage linear systems have multiplexed outputs, so the host machine must choose which I/O will be accessible
to the main connector of the system.

Usage notes:

• These are custom firmware features only available on SmartStage linear systems.
• These functions use some commands that are not part of the original SDK and DLL, so if these are rebuilt,

they will need to be included. See Figure 29 - Set GPIO Custom Function Definitions

This feature uses the custom command PMDSetCustomParameter() to set specific parameters to enable and set
the pin modes for multiplexing signals within the controller. See Figure 28 - SetGPIO Example for an example
function that handles setting the mode to a known state. See the SmartStage linear system (or appropriate
controller) guide for a reference on which I/O state connects which I/O to the main connector.

void configureGPIO(PMDAxisHandle * hAxis1, PMDuint16 gpiomode) {
 //See each GPIO case for a description of each output signal, and what other
modes to pair them with.
 //lotsa reading, sorry

 //this function simplifies the process of setting the GPIO mux
 //3 pin states and one enable pin control the mux
 //0000WZYX - the bytes sent in SetCustomParameter set each mux input state
accordingly
 //each of the following states allows different inputs/outputs to be passed
through to the appropriate location

 //GPO state set - sets all GPO to either high/low
 //16(0x10)
 //GPO set high - sets selected GPO high, 0 means no change to individual state
 //17(0x11)
 //GPO clear state - sets the selected GPO low, 0 means no change to individual
state
 //18(0x12)
 //GPIO set state - this configures these pins (which default to inputs where all
I/O is disabled) into an input or output state
 //19(0x13)

 PMDSetCustomParameter(hAxis1, GPIOSetMode, 0x0F);//this configures all pins as
outputs, enabling them to set up an output mode

 switch (gpiomode) {
 //Enable/disable
 case GPIO_Disabled:
 PMDSetCustomParameter(hAxis1, GPIOSetLow, 0x08);
 break;
 case GPIO_Enabled:
 PMDSetCustomParameter(hAxis1, GPIOSetHigh, 0x08);
 break;
 case GPIO_State0:
 //IOA1 is general purpose input, step/direction, Quad A (coordinated
motion)
 //IOA2 is general purpose input, step/direction, Quad B (coordinated
motion)

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 35 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

 //IOA3 is PEG output, LUT PEG output, general purpose output
 //Secondary axis is passed through
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x08);
 break;
 case GPIO_State1:
 //IOA1 is general purpose input, step/direction, Quad A (coordinated
motion)
 //IOA2 is general purpose input, step/direction, Quad B (coordinated
motion)
 //IOA3 is Axis out is general purpose output
 //Secondary axis is passed through
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0C);
 break;
 case GPIO_State2:
 //IOA1 is Quad A (from IOB2, the secondary axis)
 //IOA2 is Quad B (from IOB3, the secondary axis)
 //IOA3 is Axis out is general purpose output
 //IOB1 is passed through
 //IOB2 is mapped to IOA1
 //IOB3 is mapped to IOA2
 //This state is for coordinated motion, and reads position from the
secondary axis which acts as a master
 //Primary axis in state 2 should use a secondary axis in state 4 or 5
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0A);
 break;
 case GPIO_State3:
 //IOA1 is general input
 //IOA2 is Enc A from primary axis
 //IOA3 is Enc B from primary axis
 //IOB1 is Enc A out from primary
 //IOB2 is Enc B out from primary
 //IOB3 is passed through
 //Primary axis driving coordinated motion - secondary axis should be in
mode 0 or 1
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0E);
 break;
 case GPIO_State4:
 //IOA1 is general input
 //IOA2 is Enc A out
 //IOA3 is Enc B out
 //Secondary axis is passed through
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x09);
 break;
 case GPIO_State5:
 //IOA1 is PEG output
 //IOA2 is Enc A out
 //IOA3 is Enc B out
 //Secondary axis is passed through
 //This should be used as a secondary axis when interested in both PEG and
coordinating motion using encoder signal
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0D);
 break;
 case GPIO_State6:
 //IOA1 is PEG output
 //IOA2 is PEG gate signal

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 36 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

 //IOA3 is Axis out is general purpose output
 //Secondary axis is passed through
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0B);
 break;
 case GPIO_State7:
 //encoder programming mode
 //Secondary axis is passed through
 PMDSetCustomParameter(hAxis1, GPIOSetState, 0x0F);
 break;
 default:
 //default state is to disable the outputs, without losing whatever was
previously configured
 PMDSetCustomParameter(hAxis1, GPIOSetLow, 0x08);
 break;
 }
}

void getGPIO(PMDAxisHandle * hAxis1, PMDuint16 * readgpiothing) {
 PMDGetCustomParameter(hAxis1, GPIOGetState, readgpiothing);
}

Figure 28 - SetGPIO Example

PMDresult PMDSetCustomParameter(PMDAxisInterface axis_intf, PMDuint16 param, PMDint16
value)
{
 return SendCommandWordWord(axis_intf, 0xCA, param, value);
}

PMDresult PMDGetCustomParameter(PMDAxisInterface axis_intf, PMDuint16 param, PMDuint16
*value)
{
 return SendCommandWordGetWord(axis_intf, 0xCB, param, value);

}

Figure 29 - Set GPIO Custom Function Definitions

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 37 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Error Codes
The library supports a number of error code returns to help diagnose issues that occur with the controllers. See
Figure 30 - C-Motion Error Codes for a list of the various error codes that can be returned. These are defined in an
enum in PMDecode.h.

typedef enum PMDErrorCodesEnum {

 // processor error codes
 PMD_NOERROR = 0,
 PMD_ERR_OK = 0,
 PMD_ERR_Reset = 0x01,
 PMD_ERR_InvalidInstruction = 0x02,
 PMD_ERR_InvalidAxis = 0x03,
 PMD_ERR_InvalidParameter = 0x04,
 PMD_ERR_TraceRunning = 0x05,
 PMD_ERR_BlockOutOfBounds = 0x07,
 PMD_ERR_TraceBufferZero = 0x08,
 PMD_ERR_BadSerialChecksum = 0x09,
 PMD_ERR_InvalidNegativeValue = 0x0B,
 PMD_ERR_InvalidParameterChange = 0x0C,
 PMD_ERR_LimitEventPending = 0x0D,
 PMD_ERR_InvalidMoveIntoLimit = 0x0E,
 PMD_ERR_InvalidOperatingModeRestore = 0x10,
 PMD_ERR_InvalidOperatingModeForCommand = 0x11,
 PMD_ERR_BadState = 0x12,
 PMD_ERR_AtlasNotDetected = 0x14,
 PMD_ERR_HardFault = 0x13,
 PMD_ERR_BadSPIChecksum = 0x15,
 PMD_ERR_InvalidSPIprotocol = 0x16,
 PMD_ERR_InvalidTorqueCommand = 0x18,
 PMD_ERR_BadFlashChecksum = 0x19,
 PMD_ERR_InvalidFlashModeCommand = 0x1A,
 PMD_ERR_ReadOnly = 0x1B,
 PMD_ERR_InitializationOnlyCommand = 0x1C,
 PMD_ERR_IncorrectDataCount = 0x1D,
 PMD_ERR_MoveInError = 0x1E,
 PMD_ERR_WaitTimedOut = 0x1F,

 // non-processor errors
 PMD_ERR_InvalidOperation = 0x7FD0,
 PMD_ERR_NotConnected = 0x7FD1,
 PMD_ERR_NotResponding = 0x7FD2,
 PMD_ERR_CommPortRead = 0x7FD3,
 PMD_ERR_CommPortWrite = 0x7FD4,
 PMD_ERR_InvalidSerialPort = 0x7FDB,
 PMD_ERR_InterfaceNotInitialized = 0x7FDF,
 PMD_ERR_OpeningPort = 0x7FE0,
 PMD_ERR_Driver = 0x7FE1,
 PMD_ERR_NoDPRAM = 0x7FE2,
 PMD_ERR_DPRAM = 0x7FE3,
 PMD_ERR_Timeout = 0x7FE4,
 PMD_ERR_WaitCancelled = 0x7FE5,
 PMD_ERR_CommunicationsError = 0x7FFC,
 PMD_ERR_CommTimeoutError = 0x7FFD,
 PMD_ERR_ChecksumError = 0x7FFE,
 PMD_ERR_CommandError = 0x7FFF

} PMDErrorCode;

Figure 30 - C-Motion Error Codes

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 38 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Overall Controller Behavior Notes
Notes about interesting controller behaviors to be aware of when programming:

1) Trapezoidal profile mode resets the velocity to 0 when a limit is encountered, so a new set of profile
parameters should be issued (velocity, acceleration, deceleration, etc.)

2) Velocity contouring mode supports positive and negative values, but other profile modes do not, this is
because velocity profile mode uses the polarity of the velocity to determine the travel direction, where
other profile modes use absolute position.

Known C-Motion Issues:

Serial Connection Desynchronization
A known issue with asynchronous communications is when the host and controller become desynchronized. Since
all communications with the controller work off of expected command sizes and waits for a buffer to be filled
before processing anything from the host. If a byte is missed then this can be interrupted, causing a lapse in
communications where the controller always immediately returns an error, or stops responding to the host. To
solve this, the host should send bytes of 0’s to the controller until the controller responds with something. Then
normal communications can resume.

The latest release of C-Motion should handle these cases and has a function internal to the DLL and SDK called
PMDSerial_Sync. This should not normally be needed by user code.

Driver Dependency Issues
Note that the libraries have support for a variety of device drivers, and some are key to include and have installed
on the host machine. Serial drivers come with Windows, but the IXXAT CAN drivers do not, and if they are needed,
they must be downloaded from their website. The standard libraries have support for more devices and hardware
as well, so these dependencies will need to be removed as necessary until support for installed devices is included.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 39 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Starting Projects in Visual Studio

Visual Studio 2019 C++ Project Setup
Finding the files:
The files referenced in the instructions below should be included on the USB stick that came with the
controller/stage. See Definitions Used Within This Guide, USB Stick, Resource locations.

VS2019 C++ Project Notes:
Users must configure the project and compiler properly to get the SDK to build error-free. There are some files
that will cause the code not to compile or run depending on the hardware drivers and communications devices
installed on the host machine.
When compiling for x64bit machines, the CAN communications .c and .h files must be removed from the project.
The files that are not needed are listed below. The CAN libraries are built for x86 (32bit) machines.

• PMDCAN.c
• PMDCAN.h
• PMDIXXATCAN3.c
• PMDIXXATCAN3.h

When not using a communications protocol, users must be certain to exclude files that use libraries and hardware
that do not have installed drivers.

VS2019 Starting a New C++ Project:
If build errors are encountered, please read through the VS2019 C++ Common Errors section below to reference
some common solutions.

1) Start a new project in Visual Studio 2017, a C/C++ Console App per Figure 31 - VS2019 C++ New Project

Figure 31 - VS2019 C++ New Project

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 40 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

2) Copy and paste local copies of the “C” and “Include” folders from C-Motion inside the project directory, at
the same level as the projectname.vcxproj file

3) Right click the “Header Files” folder in the solution explorer view and select “Add”, then “Existing Item…”
and select all the files from the “Include” directory in the project folder per Figure 32 - VS2019 Adding
Header Files

4) Right click the “Source Files” folder in the solution explorer view and select “Add”, then “Existing Item…”
and select all the files from the “C” directory in the project folder

Figure 32 - VS2019 Adding Header Files

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 41 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

5) Right click the “Resource Files” folder in the solution explorer view and select “Add”, then “Existing
Item…” and select the following items from the sub-folders in “Include”:

a. ..\Include\IXXAT\vcisdk.lib
b. ..\Include\PLX\PlxApi.lib
c. ..\Include\NI\ni845x.lib

Figure 33 - VS2019 Project Properties

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 42 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

6) Project Properties need to be modified, right click on the project name in the solution explorer view and
select properties – be sure to select all configs and all platforms per Figure 33 - VS2019 Project Properties

a. C/C++ - General – SDL Checks – No
b. Advanced – Character Set – Use Multi-Byte Character Set
c. VC++ directories – include directories – add the following folders per Figure 34 - VS2019 VC++

Directories
i. ..\Include

ii. ..\Include\IXXAT
iii. ..\Include\PLX
iv. ..\Include\NI

Figure 34 - VS2019 VC++ Directories

1 2

3 4

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 43 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

7) Exclude the .c files that have uninstalled dependencies or required devices. The following interfaces have
device specific deriver requirements and will not compile unless those drivers are installed. See Figure 35 -
VS2019 Excluding Uninstalled Dependencies

a. PMDNISPI.c
v. For use with SPI communications

vi. Install the drivers for an NI845x device
b. PMDCAN.c

vii. For use with CAN communications
viii. Install the drivers for an IXXATUSB-to-CAN adapter

Figure 35 - VS2019 Excluding Uninstalled Dependencies

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 44 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

8) Build the solution to ensure that everything has linked correctly per Figure 36 - VS2019 Rebuild
a. See VS2017 C++ Common Errors below to troubleshoot errors when building the project solution.

VCINLP.dll is a common CAN driver problem, SAFESEH is a linker exception handler problem, etc.

Figure 36 - VS2019 Rebuild

9) The program should now be set up, and ready to run, the “main entry point” to the program, is
projectname.c

10) Running the program can be done by selecting the debug menu, and selecting either “Start Debugging” or
“Start Without Debugging”, see Figure 37 - VS2019 Run Debugging

a. Begin programming the stage control program or continue reading for where to find example
code to start moving the stage with. Note that the examples are explained below the instructions
on how to use them, and each example includes well documented functions and setup code.

Figure 37 - VS2019 Run Debugging

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 45 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

11) Once the project has been “Built” or compiled, it can also be run by using the generated
“projectname.exe” file found at the debug output location, the typical default is below, and can also be
found by browsing through project properties, in “General” and selecting the output directory, per Figure
38 - VS2019 Output Directory

b. ..\projectname\Debug

Figure 38 - VS2019 Output Directory

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 46 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2019 C++ Common Errors
VS2019 C++ SAFESEH Warning:
If the build is throwing a SAFESEH warning, or Link 2026 errors, then change the “Image has safe exception
handlers” setting in the project properties window under Linker -> Advanced, down at the bottom of the list per
Figure 39 - VS2019 SAFESEH Warning

Figure 39 - VS2019 SAFESEH Warning

VS2019 C++ Missing Drivers:

Figure 40 - VS2019 Missing Driver Error

This error pops up when the correct drivers are not installed for the USB device needed, specifically for the IXXAT
USB-to-CAN adapter. Ensure that the drivers for the devices in use are installed or remove the dependent files that
require the drivers. See Figure 40 - VS2019 Missing Driver Error

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 47 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2019 C++ Runtime Library Errors:
A long string of link errors in the build output could likely indicate an incorrect selection for the runtime library.
Note that this selection is build dependent, and must be either debug or release, otherwise a long string of build
errors can occur. See Figure 41 - VS2019 Linker Error

Figure 41 - VS2019 Linker Error

VS2019 C++ Communications Timeout:
Many Dover stages and stage controllers allow multiple communications protocols and use DIP-switches to select
which protocol is currently in use. Make sure these switches are properly set, refer to the documentation supplied
with the stage or controller to set these, or contact Dover Motion for more information.

Also make sure that your baud rates match for serial and CAN communications. These protocols require the
host/device be running at the same data rates.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 48 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Visual Studio 2019 C# Project Setup
Finding the files:
The files referenced in the instructions below should be included on the USB stick that came with the
controller/stage. See Definitions Used Within This Guide, USB Stick, Resource locations.

VS2019 C# Usage notes:
C-Motion has been pre-packaged for Windows 32-bit and 64-bit machines into a set of dll files. Two files are
needed, a wrapper and the source dll. PMDLibrary.dll and C-Motion.dll are needed to set up a C# program.

Creating a new method should be done using the commands listed below. They will initialize a given device over
the selected communications protocol. Be sure to initialize both the peripheral and the device appropriately, then
initialize the axis handle with both items. See Figure 42 - VS2019 C# Connection Initialization.

• Peripheral Initialization Options
o PMDPeripheralCOM

 This initializes a Point-to-Point serial connection with a single controller
o PMDPeripheralMultiDrop

 This initializes a multi-drop serial connection that addresses one of many controllers on
a shared network

o PMDPeripheralCAN
 This initializes a CAN connection with the controller at a hard-coded 1M baud rate.

• Device Initialization Options
o PMDDeviceType.MotionProcessor

• Axis Initialization
o PMDAxisNumber.Axis1 – This is used for most features on the controller
o PMDAxisNumber.Axis2 – This is used to access the auxiliary encoders and TOP settings

periph = new PMD.PMDPeripheralCAN(580, 600, 0);
device = new PMD.PMDDevice(periph, PMD.PMDDeviceType.MotionProcessor);
PMD.PMDAxis axis1 = new PMD.PMDAxis(device, PMD.PMDAxisNumber.Axis1);

Figure 42 - VS2019 C# Connection Initialization

Whenever a library C procedure returns a non-zero status code (PMDresult.NO_ERROR) an exception will be
thrown. The data member of the exception will contain a data property with the key “PMDresult”.

C-Motion commands that return a single value become class properties and drop the “set” and “get” from the
command. Commands can be used as below:

pos = axis1.ActualPosition;

Signal and event bitmasks for returned status registers can be found in the SDK if needed. See PMDtypes.c within
the SDK.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 49 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2019 Starting a New C# Project:
If build errors are encountered, please read through the VS2019 C# Common Errors section below to reference
some common solutions.

1) Open MS Visual Studio 2019 and start a new C# Console Application for the .NET Framework 4 per Figure
43 - VS2019 New Project C#.

Figure 43 - VS2019 New Project C#

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 50 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

2) The appropriate (32bit (x86) or 64bit (x64)) dll files that are needed for the project should be pasted into
the source folder of the project, in the same folder as Program.cs and Projectname.csproj, see Figure 44 -
VS2019 DLL Location

a. 32-bit Release:
i. ..\ C-Motion.zip\C-Motion\DLLs\Release\x86

1. PMDLibrary.dll
2. C-Motion.dll

b. 32-bit Debug:
i. ..\ C-Motion.zip\C-Motion\DLLs\Debug\x86

1. PMDLibrary.dll
2. C-Motion.dll

c. 64-bit Release:
i. ..\ C-Motion.zip\C-Motion\DLLs\Release\x64

1. PMDLibrary.dll
2. C-Motion.dll

d. 64-bit Debug:
i. ..\ C-Motion.zip\C-Motion\DLLs\Debug\x64

1. PMDLibrary.dll
2. C-Motion.dll

Figure 44 - VS2019 DLL Location

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 51 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

3) Right click on References in the Solution Explorer view and select “Add Reference” per Figure 45 - VS2019
Add DLL to Project

a. Through the menu select browse and locate the PMDLibrary.dll file just included in the source
folder

b. Why only include the one file? PMDLibrary.dll is the wrapper called by the program, C-Motion.dll
is called by PMDLibrary.dll.

Figure 45 - VS2019 Add DLL to Project

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 52 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

4) Open the Debug Configuration Manager, and change the Active Solution Platform to either x86, or x64
depending on the project requirements per Figure 46 - VS2019 Choose Solution Platform

Figure 46 - VS2019 Choose Solution Platform

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 53 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

5) Build the solution by choosing Build – Rebuild Solution and navigate to the output folder, make sure that
the c-motion.dll file ended up in the output directory, if not, paste them in that location so that the code
can find them when running, this is needed for debugging code to run as well. See Figure 47 - VS2019 C#
Build Directory

a. Default project build/compile locations (depends on build settings, see the output options in the
Project Manager -> General -> Output Directory):

i. ..\Projectname\bin\x64\Debug
ii. ..\Projectname\bin\x64\Release

b. C-Motion.dll
c. C-Motion.lib
d. PlxApi.lib
e. PlxApi720.dll
f. PMDLibrary.dll
g. Vcisdk.lib

Figure 47 - VS2019 C# Build Directory

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 54 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

6) To debug the program, select debug, and either Start Debugging, or Start Without Debugging per Figure
48 - VS2019 Debugging C#

Figure 48 - VS2019 Debugging C#

7) The .exe result should run without problems, and should not give any errors for missing files, to

troubleshoot, see VS2017 C# Common Errors below.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 55 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2019 C# Common Errors
VS2019 C# DLLs Could Not Be Included:
The wrapper PMDLibrary.dll is called by the C# program, and C-Motion.dll is called by PMDLibrary.dll. So only
PMDLibrary.dll needs to be added as a reference to the project. Make sure that c-motion.dll is included in the
output directory though, as it is still a dependency for the program.

VS2019 C# DLLs Could Not Be Found:
Sometimes Visual Studio puts the build output for debugging in the default file repository for all Visual Studio
projects, double check that the build output directory is where you think it is – check the full file path per Figure 49
- VS2019 C# Output Directory Verification

Visual Studio can put the output directory in:
C:\Users\Username\source\repos\Projectname

It is fine to work out of this default repository; however, the code will be more manageable if it all stays in the
same location. It is advisable to update the build output to stay within the project source folder.

Figure 49 - VS2019 C# Output Directory Verification

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 56 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2019 C# 64bit Build Target Error:
Error message:

An attempt was made to load a program with an incorrect format. (Exception from HRESULT:
0x8007000В)

This error can occur when a 64bit OS project is set to use “Any CPU” in the Configuration Manager. Make
sure the build target architecture is properly specified for the build solution, see Figure 50 - VS2019 HRESULT:
0x8007000В

Figure 50 - VS2019 HRESULT: 0x8007000В

VS2019 C# Serial Port Connection Error:
 The C-Motion DLLs start COM port numbering at 0, so use the COM port number found in the Device
Manager minus one. So, if the stage controller shows up as COM2, enter 1 into the function to initialize the axis.

VS2019 C# CAN Communications Timeouts/Errors:
 The DLLs use a fixed baud rate of 1M. The baud rate of the controller, DOF or otherwise must be set to
this baud rate to connect properly. Contact Dover for assistance changing the CAN baud rate on your stage
controller or modify and rebuild the DLL distribution to allow configuration of the CAN baud rate.

VS2019 C# Communications Timeout:
 Many Dover stages and stage controllers allow multiple communications protocols and use DIP-switches
to select which protocol is currently in use. Make sure these switches are properly set, refer to the documentation
supplied with the stage or controller to set these, or contact Dover Motion for more information.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 57 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Visual Studio 2017 C++ Project Setup
Finding the files:
The files referenced in the instructions below should be included on the USB stick that came with the
controller/stage. See Definitions Used Within This Guide, USB Stick, Resource locations.

VS2017 C++ Project Notes:
Users must configure the project and compiler properly to get the SDK to build error-free. There are some files
that will cause the code not to compile or run depending on the hardware drivers and communications devices
installed on the host machine.
When compiling for x64bit machines, the CAN communications .c and .h files must be removed from the project.
The files that are not needed are listed below. The CAN libraries are built for x86 (32bit) machines.

• PMDCAN.c
• PMDCAN.h
• PMDIXXATCAN3.c
• PMDIXXATCAN3.h

When not using a communications protocol, users must be certain to exclude files that use libraries and hardware
that do not have installed drivers.

VS2017 Starting a New C++ Project:
If build errors are encountered, please read through the VS2017 C++ Common Errors section below to reference
some common solutions.

1) Start a new project in Visual Studio 2017, a C/C++ Console App per Figure 51 - VS2017 C++ New Project

Figure 51 - VS2017 C++ New Project

2) Copy and paste local copies of the “C” and “Include” folders from C-Motion.zip inside the project

directory, at the same level as the projectname.vcxproj file

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 58 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

3) Right click the project in the solution explorer view, select add – existing item and select the following
items:

a. ..\Include\IXXAT\vcisdk.lib
b. ..\Include\NI\ni845x.lib
c. ..\Include\PLX\PlxApi.lib
d. All items from ..\Include

4) Right click the project in the solution explorer view, select add – existing item and select all the .c files
from the C folder.

5) Project Properties need to be modified, right click on the project name in the solution explorer view and
select properties – be sure to select all configs and all platforms per Figure 52 - VS2017 Project Properties

a. General – character set – multibyte character set
b. C/C++ - General – SDL Checks – No
c. C/C++ - Code Generation – Runtime Library – Multi-threaded Debug (/MTd)

i. This setting is debug/release dependent, so if a list of errors linker errors comes up
when compiling, be sure this settings is /MTd for a debug build, and /MT for a release
build

d. C/C++ - Precompiled Headers - Not using precompiled headers

Figure 52 - VS2017 Project Properties

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 59 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

e. VC++ directories – include directories – add the following folders per Figure 53 - VS2017 VC++
Directories

ix. ..\Include
x. ..\Include\IXXAT

xi. ..\Include\PLX
xii. ..\Include\NI

Figure 53 - VS2017 VC++ Directories

1 2

3 4

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 60 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

6) Exclude the .c files that have uninstalled dependencies or required devices. The following interfaces have

device specific deriver requirements and will not compile unless those drivers are installed. See Figure 54
– VS2017 Removing Uninstalled Dependencies

c. PMDNISPI.c
xiii. For use with SPI communications
xiv. Install the drivers for an NI845x device

d. PMDCAN.c
xv. For use with CAN communications

xvi. Install the drivers for an IXXATUSB-to-CAN adapter

Figure 54 – VS2017 Removing Uninstalled Dependencies

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 61 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

7) Build the solution to ensure that everything has linked correctly per Figure 55 - VS2017 Rebuild
a. See VS2017 C++ Common Errors below to troubleshoot errors when building the project solution.

VCINLP.dll is a common CAN driver problem, SAFESEH is a linker exception handler problem, etc.

Figure 55 - VS2017 Rebuild

8) The program should now be set up, and ready to run, the “main entry point” to the program, is
projectname.c

9) Running the program can be done by selecting the debug menu, and selecting either “Start Debugging” or
“Start Without Debugging”, see Figure 56 - VS2017 Run Debugging

c. Begin programming the stage control program or continue reading for where to find example
code to start moving the stage with. Note that the examples are explained below the instructions
on how to use them, and each example includes well documented functions and setup code.

Figure 56 - VS2017 Run Debugging

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 62 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

10) Once the project has been “Built” or compiled, it can also be run by using the generated
“projectname.exe” file found at the debug output location, the typical default is below, and can also be
found by browsing through project properties, in “General” and selecting the output directory, per Figure
57 - VS2017 Output Directory

d. ..\projectname\Debug

Figure 57 - VS2017 Output Directory

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 63 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2017 C++ Common Errors
VS2017 C++ SAFESEH Warning:
If the build is throwing a SAFESEH warning, or Link 2026 errors, then change the “Image has safe exception
handlers” setting in the project properties window under Linker -> Advanced, down at the bottom of the list per
Figure 58 - VS2017 SAFESEH Warning

Figure 58 - VS2017 SAFESEH Warning

VS2017 C++ Missing Drivers:

Figure 59 - VS2017 Missing Driver Error

This error pops up when the correct drivers are not installed for the USB device needed, specifically for the IXXAT
USB-to-CAN adapter. Ensure that the drivers for the devices in use are installed or remove the dependent files that
require the drivers. See Figure 59 - VS2017 Missing Driver Error.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 64 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2017 C++ Runtime Library Errors:
A long string of link errors in the build output could likely indicate an incorrect selection for the runtime library.
Note that this selection is build dependent, and must be either debug or release, otherwise a long string of build
errors can occur. See Figure 60 - VS2017 Linker Error

Figure 60 - VS2017 Linker Error

VS2017 C++ Communications Timeout:
Many Dover stages and stage controllers allow multiple communications protocols and use DIP-switches to select
which protocol is currently in use. Make sure these switches are properly set, refer to the documentation supplied
with the stage or controller to set these, or contact Dover Motion for more information.

Also make sure that your baud rates match for serial and CAN communications. These protocols require the
host/device be running at the same data rates.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 65 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Visual Studio 2017 C# Project Setup
Finding the files:
The files referenced in the instructions below should be included on the USB stick that came with the
controller/stage. See Definitions Used Within This Guide, USB Stick, Resource locations.

VS2017 C# Usage notes:
C-Motion has been pre-packaged for Windows 32-bit and 64-bit machines into a set of dll files. Two files are
needed, a wrapper and the source dll. PMDLibrary.dll and C-Motion.dll are needed to set up a C# program.

Creating a new method should be done using the commands listed below. They will initialize a given device over
the selected communications protocol. Be sure to initialize both the peripheral and the device appropriately, then
initialize the axis handle with both items. See Figure 61 - VS2017 C# Connection Initialization.

• Peripheral Initialization Options
o PMDPeripheralCOM

 This initializes a Point-to-Point serial connection with a single controller
o PMDPeripheralMultiDrop

 This initializes a multi-drop serial connection that addresses one of many controllers on
a shared network

o PMDPeripheralCAN
 This initializes a CAN connection with the controller at a hard-coded 1M baud rate.

• Device Initialization Options
o PMDDeviceType.MotionProcessor

• Axis Initialization
o PMDAxisNumber.Axis1 – This is used for most features on the controller
o PMDAxisNumber.Axis2 – This is used to access the auxiliary encoders and TOP settings

periph = new PMD.PMDPeripheralCAN(580, 600, 0);
device = new PMD.PMDDevice(periph, PMD.PMDDeviceType.MotionProcessor);
PMD.PMDAxis axis1 = new PMD.PMDAxis(device, PMD.PMDAxisNumber.Axis1);

Figure 61 - VS2017 C# Connection Initialization

Whenever a library C procedure returns a non-zero status code (PMDresult.NO_ERROR) an exception will be
thrown. The data member of the exception will contain a data property with the key “PMDresult”.

C-Motion commands that return a single value become class properties and drop the “set” and “get” from the
command. Commands can be used as below:

pos = axis1.ActualPosition;

Signal and event bitmasks for returned status registers can be found in the SDK if needed. See PMDtypes.c within
the SDK.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 66 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2017 Starting a New C# Project:
If build errors are encountered, please read through the VS2017 C# Common Errors section below to reference
some common solutions.

8) Open MS Visual Studio 2017 and start a new C# Console Application for the .NET Framework 4 per Figure
62 - VS2017 New Project C#

Figure 62 - VS2017 New Project C#

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 67 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

9) The appropriate (32bit (x86) or 64bit (x64)) dll files that are needed for the project should be pasted into
the source folder of the project, in the same folder as Program.cs and Projectname.csproj, see Figure 63 -
VS2017 DLL Location

a. 32-bit Release:
i. ..\ C-Motion.zip\C-Motion\DLLs\Release\x86

1. PMDLibrary.dll
2. C-Motion.dll

b. 32-bit Debug:
i. ..\ C-Motion.zip\C-Motion\DLLs\Debug\x86

1. PMDLibrary.dll
2. C-Motion.dll

c. 64-bit Release:
i. ..\ C-Motion.zip\C-Motion\DLLs\Release\x64

1. PMDLibrary.dll
2. C-Motion.dll

d. 64-bit Debug:
i. ..\ C-Motion.zip\C-Motion\DLLs\Debug\x64

1. PMDLibrary.dll
2. C-Motion.dll

Figure 63 - VS2017 DLL Location

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 68 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

10) Right click on References in the Solution Explorer view and select “Add Reference” per Figure 64 - VS2017
Add DLL to Project

a. Through the menu select browse and locate the PMDLibrary.dll file just included in the source
folder

b. Why only the one file? PMDLibrary.dll is called by the program, C-Motion.dll is called by
PMDLibrary.dll.

Figure 64 - VS2017 Add DLL to Project

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 69 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

11) Open the Debug Configuration Manager, and change the Active Solution Platform to either x86, or x64
depending on the project requirements per Figure 65 - VS2017 Choose Solution Platform.

Figure 65 - VS2017 Choose Solution Platform

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 70 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

12) Build the solution by choosing Build – Rebuild Solution and navigate to the output folder, make sure that
the dll files ended up in the output directory, if not, paste them in that location so that the code can find
them when running, this is needed for debugging code to run as well. See Figure 66 - VS2017 C# Build
Directory

a. Default project build/compile locations (depends on build settings, see the output options in the
Project Manager -> General -> Output Directory):

i. ..\Projectname\bin\x64\Debug
ii. ..\Projectname\bin\x64\Release

b. C-Motion.dll
c. C-Motion.lib
d. PlxApi.lib
e. PlxApi720.dll
f. PMDLibrary.dll
g. Vcisdk.lib

Figure 66 - VS2017 C# Build Directory

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 71 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

13) To debug the program, select debug, and either Start Debugging, or Start Without Debugging per Figure
67 - VS2017 Debugging C#

Figure 67 - VS2017 Debugging C#

14) The .exe result should run without problems, and should not give any errors for missing files, to

troubleshoot, see VS2017 C# Common Errors below.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 72 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2017 C# Common Errors
VS2017 C# DLLs Could Not Be Included:
PMDLibrary.dll is called by the C# program, and C-Motion.dll is called by PMDLibrary.dll. So only PMDLibrary.dll
needs to be added as a reference to the project.

VS2017 C# DLLs Could Not Be Found:
Sometimes Visual Studio puts the build output for debugging in the default file repository for all Visual Studio
projects, double check that the build output directory is where you think it is – check the full file path per Figure 68
- VS2017 C# Output Directory Verification.

Visual Studio can put the output directory in:
C:\Users\Username\source\repos\Projectname

It is fine to work out of this default repository; however, the code will be more manageable if it all stays in the
same location. It is advisable to update the build output to stay within the project source folder.

Figure 68 - VS2017 C# Output Directory Verification

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 73 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

VS2017 C# 64bit Build Target Error:
Error message:

An attempt was made to load a program with an incorrect format. (Exception from HRESULT:
0x8007000В)

This error can occur when a 64bit OS project is set to use “Any CPU” in the Configuration Manager. Make
sure the build target architecture is properly specified for the build solution, see Figure 69 - VS2017 HRESULT:
0x8007000В.

Figure 69 - VS2017 HRESULT: 0x8007000В

VS2017 C#Serial Port Connection Error:
 The C-Motion DLLs start COM port numbering at 0, so use the COM port number found in the Device
Manager minus one. So, if the stage controller shows up as COM2, enter 1 into the function to initialize the axis.

VS2017 C# CAN Communications Timeouts/Errors:
 The DLLs use a fixed baud rate of 1M. The baud rate of the controller, DOF or otherwise must be set to
this baud rate to connect properly. Contact Dover for assistance changing the CAN baud rate on your stage
controller, or modify and rebuild the DLL distribution to allow configuration of the CAN baud rate.

VS2017 C# Communications Timeout:
 Many Dover stages and stage controllers allow multiple communications protocols and use DIP-switches
to select which protocol is currently in use. Make sure these switches are properly set, refer to the documentation
supplied with the stage or controller to set these, or contact Dover Motion for more information.

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 74 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Original Source Code

The SDK
The SDK (Source Development Kit) contains all the source code that C-Motion utilizes, and allows users to make
edits and update the code as needed. Dover has put together some examples on how to use the libraries, and has
a slightly modified distribution from the original source (added configuration options for communications settings
primarily).

The original source code can be installed to the Documents folder on a Windows machine by running (as Admin)
PMDSDK550.exe. This will install the source files to the folder location listed below. The original source supports all
the original communications methods, PCIE cards, SPI, CAN, Windows and Linux Serial. Missing
dependencies/drivers will prevent the source code from compiling currently, so unused or uninstalled
dependencies should be removed.

…\Documents\PMD\SDK

The DLLs
The C-Motion DLLs include support for a variety of features and communications protocols. They are

provided pre-compiled for Windows 10 machines, and the source code is provided by an installation file.

There are several features that may become cumbersome dependencies for those trying to minimize a code
footprint, and these can be selectively removed from the project as needed. There exists by default support for
serial, CAN and PCI card drivers. Most applications only require one communications protocol, so the unused code
may be removed, and the libraries rebuilt. Instructions for rebuilding the DLLs can be found in the section:
Rebuilding the DLLs.

 Importing these DLLs often requires a header file. The header files that need to be used with these DLLs
are included with the C-Motion source for the DLLs. It is best to take these header files from the CMESDK192.exe
file drop location (found below). This should help import the DLLs into most other tools and software packages
that support them like LabVIEW and Matlab.

…\Documents\PMD\CMESDK\C-Motion\Include

Rebuilding the DLLs
1) If the CMESDK192.exe has already been installed, just delete the PMD folder contents.

a. Go to Documents/PMD and delete everything
2) Run CMESDK192.exe as an administrator
3) Navigate to the installed folder location at Documents/PMD/CMESDK/HostCode/DLLBuild
4) Open the Visual Studio project file DLLBuild.sln (See Figure 70 – DLL File Structure)

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 75 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Figure 70 – DLL File Structure

5) Visual Studio will ask to retarget the solution, select “OK” (See Figure 71 - Visual Studio Retargeting
Solution)

Figure 71 - Visual Studio Retargeting Solution

6) Select the build conditions that are needed (debug/release and 32/64 bit) (See Figure 72 - Build
Conditions)

Figure 72 - Build Conditions

7) Build the project
a. The configured project build directory is Documents/PMD/CMESDK/HostCode/…
b. Where “…” is Debug or Release depending on the build settings

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 76 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

8) Take the output files (listed below) and put them in the project source folder, include PMDLibrary.dll in

the project references (C-Motion.dll is referenced by PMDLibrary.dll and should not be included as a
reference)

a. PMDLibrary.dll - include this in the project
b. CoMotion.dll - don’t include this in the project

A common build error is that Visual Studio can’t find plxapi.lib or vciapi.lib, these can be found in:
Documents/PMD/CMESDK/C-Motion/Include/PLX
Documents/PMD/CMESDK/C-Motion/Include/IXXAT
Take these files (plxapi.lib and vciapi.lib) and put them into the output folder for the respective build that you are
trying to compile – these are located at:
Documents/PMD/CMESDK/HostCode/Release
Documents/PMD/CMESDK/HostCode/Debug

SmartStage Linear System C-Motion Guide

Document No. 41-1368 Revision: A Revision Date: 09/04/2020 Sheet: 77 of 77

159 Swanson Road Boxborough, MA 01719 www.dovermotion.com Tel: 508-475-3400 Fax: 508-836-3223

Review/Revision History

Revision Date Summary ECO Number Writer/Reviser
A 09/04/20 Initial Release DM11185 Griffin Whittredge

	About This Guide
	Additional Reference Guides
	What is included?
	Definitions Used Within This Guide
	What steps are needed to communicate with the stages?
	Point-to-Point Serial
	Multidrop Serial
	CAN
	C-Motion Axis Handles

	Communicating with the Controllers
	Handshake Communications
	Important Registers and Bits

	Getting the stage to move
	Commutation or Phase Initialization
	Basic Motion Commands
	Unit conversion

	Setting and Reading I/O
	Homing Routines
	SmartStage Linear Homing Routine:
	Items tracked by the homing routine:
	Using the function:

	Advanced Features
	Stall detection and Position Errors
	Breakpoints
	Absolute positioning with Stepper Motors (Open Loop Control)
	Electronic Gearing (Step and Direction)
	TOP – Trigger on Position
	UDP – User Defined Profile Mode
	Setting the GPIO State
	Error Codes

	Overall Controller Behavior Notes
	Known C-Motion Issues:
	Serial Connection Desynchronization
	Driver Dependency Issues

	Starting Projects in Visual Studio
	Visual Studio 2019 C++ Project Setup
	Finding the files:
	VS2019 C++ Project Notes:
	VS2019 Starting a New C++ Project:
	VS2019 C++ Common Errors
	VS2019 C++ SAFESEH Warning:
	VS2019 C++ Missing Drivers:
	VS2019 C++ Runtime Library Errors:
	VS2019 C++ Communications Timeout:

	Visual Studio 2019 C# Project Setup
	Finding the files:
	VS2019 C# Usage notes:
	VS2019 Starting a New C# Project:
	VS2019 C# Common Errors
	VS2019 C# DLLs Could Not Be Included:
	VS2019 C# DLLs Could Not Be Found:
	VS2019 C# 64bit Build Target Error:
	VS2019 C# Serial Port Connection Error:
	VS2019 C# CAN Communications Timeouts/Errors:
	VS2019 C# Communications Timeout:

	Visual Studio 2017 C++ Project Setup
	Finding the files:
	VS2017 C++ Project Notes:
	VS2017 Starting a New C++ Project:
	VS2017 C++ Common Errors
	VS2017 C++ SAFESEH Warning:
	VS2017 C++ Missing Drivers:
	VS2017 C++ Runtime Library Errors:
	VS2017 C++ Communications Timeout:

	Visual Studio 2017 C# Project Setup
	Finding the files:
	VS2017 C# Usage notes:
	VS2017 Starting a New C# Project:
	VS2017 C# Common Errors
	VS2017 C# DLLs Could Not Be Included:
	VS2017 C# DLLs Could Not Be Found:
	VS2017 C# 64bit Build Target Error:
	VS2017 C#Serial Port Connection Error:
	VS2017 C# CAN Communications Timeouts/Errors:
	VS2017 C# Communications Timeout:

	Original Source Code
	The SDK
	The DLLs
	Rebuilding the DLLs

	Review/Revision History

