Request a Quote Contact Us

Simple to Use Nanopositioning Stage

Just add your objective and start focusing today!

Nanopositioning Stage for Objective Focusing – DOF-5

Discover the easiest way to obtain perfect images. Open the box, add your objective, and start focusing. No more bulky external controller and cables. No more alignment headaches. Stable, clear images with no reliability issues.

DOF-5 Overview
  • Download DOF White Paper

    Please complete the form below to download this white paper. The information you provide will be used in accordance with the terms of our privacy policy.

  • This field is for validation purposes and should be left unchanged.

DOF-5 Specifications

Travel (mm)> 5
Payload Mass (g)100 – 900
Resolution (nm)1.25 or 5
Servo Bandwidth (Hz)≥ 225 Hz
Stability (nm RMS)5
Step & Settle100 nm within
+/- 15 nm in < 15 ms
Bi-Directional Repeatability (nm) (for 500nm moves)
Homing Repeatability (µm)1
Overall Size, excluding objective mount (mm)77 x 82 x 30
Max Acceleration (m/s/s) with 1 kg6
Max Velocity (mm/s)125 (with 5 nm resolution)
CommunicationsRS232, RS485 full or half Duplex, CAN2.0B
InputsStep and direction

*Specifications based on a 250g payload

Request Pricing

The DOF-5 delivers significant performance advantages over piezo stages for a much lower cost. Complete the form below to get pricing information and inquire about volume discounts.

  • This field is for validation purposes and should be left unchanged.

Advantages for Nanopositioning Microscopy

The use of a dedicated Z axis focusing stage based on piezo actuators is currently the most commonly applied technique for high-performance and high-precision imaging; however, piezo-driven actuators have a number of very distinct limitations—despite their current dominance of the automated microscope focusing market.

The table below highlights the limitations of piezo stages and compares them with the features of our new DOF-5 objective focusing stage.

Piezo Flexure StagesDOF Objective Focusing Stages
Typical piezo cost with controls ~$8,000 – $12,000.Single nanopositioning system unit price with controls up to 50% less.
Flexure bearing results in off-axis motion and position dependent parasitic force.Crossed roller bearing provides higher stiffness for faster moves. This results in increased throughput and longer nanopositioner life.
Stack or oscillating actuation have a non-linear response and bandwidth decreases as payload mass increases.Brushless linear servo motor actuation provides higher servo bandwidth and a linear response for optical microscopy.
< 300 μm travel requires precise alignment and an additional coarse axis when more travel is required.> 5 mm travel makes alignment easier. It also helps avoid microscope objective crashes and provides enough travel to clear interferences.
Oscillating piezos make a loud screeching noise.A quiet servo is valued by lab workers.
Off-axis, complex controls are typically proprietary which leads to higher costs for piezo actuators.Onboard controls result in a lower cost of ownership due to less complexity and fewer cables.

Performance Plots

Fast, Accurate, and Repeatable 100 nm Moves

The above staircase plot displays position vs. time for ten consecutive 100 nm upward moves, followed by ten consecutive 100 nm downward moves. The data for the plot was taken at a 10-kHz sample rate, using a laser interferometer, and a plane mirror mounted at the base of a 300-gram objective. This staircase plot demonstrates the DOF-5’s ability to execute the very fast, accurate, and repeatable small moves typical in focusing applications.

High Throughput Steps with Very Low Jitter

The above zoom-in on a single 100 nm step from the staircase plot demonstrates the high-throughput focusing capabilities of the DOF-5. In the above move, with an initial position stability of < +/- 3 nm, the objective performs a 100 nm step, settling into and remaining within a ± 7 nm window, in under 3 msec.

Nanometer Level Bi-directional Repeatability

The above plot shows a zoom box being shown over a pair of positions within the 100 nm staircase move sequence. The two selected positions are nominally the same, but are being approached from opposing directions. The position on the left was made during upward moves, while the position on the right was made while moving downward. As such, any lack of bidirectional repeatability will show up when comparing these two positions.

In this extreme zoom, with a vertical scale of 5 nm per division, the two positions (nominally at 400 nm) are each visible at high resolution. Despite being 2.8 seconds apart, and approached from opposing directions, the difference between the mean of the two positions during their 250 msec position hold is under 2 nm.

DOF Applications in Optical Microscopy

The DOF-5 has been optimized for microscope objective focusing applications such as:

  • Next-generation sequencing (NGS)
  • Digital cell morphology
  • Automated digital pathology
  • Optical metrology instruments
  • Semiconductor and nanotechnology imaging
  • Digital microscopes
  • High content imaging
  • Automated cell counting
DOF-5 Applications

Let’s talk about your next project.

Contact Us